orthogonal table - significado y definición. Qué es orthogonal table
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es orthogonal table - definición

Orthogonal coordinate system; Orthogonal coordinate

Orthogonal polynomials         
SET OF POLYNOMIALS WHERE ANY TWO ARE ORTHOGONAL TO EACH OTHER
Orthogonal polynomial; Orthogonal polynomials/Proofs; Orthogonal polynomials/proofs; Orthonormal polynomial
In mathematics, an orthogonal polynomial sequence is a family of polynomials such that any two different polynomials in the sequence are orthogonal to each other under some inner product.
Orthogonal coordinates         
In mathematics, orthogonal coordinates are defined as a set of d coordinates q = (q1, q2, ..., qd) in which the coordinate hypersurfaces all meet at right angles (note: superscripts are indices, not exponents).
Projective orthogonal group         
  • right
  • right
TWOFOLD QUOTIENT OF THE ORTHOGONAL GROUP: PO(N) = O(N)/{±1}
Projective special orthogonal group; Projective general orthogonal group
In projective geometry and linear algebra, the projective orthogonal group PO is the induced action of the orthogonal group of a quadratic space V = (V,Q)A quadratic space is a vector space V together with a quadratic form Q; the Q is dropped from notation when it is clear. on the associated projective space P(V).

Wikipedia

Orthogonal coordinates

In mathematics, orthogonal coordinates are defined as a set of d coordinates q = ( q 1 , q 2 , , q d ) {\displaystyle \mathbf {q} =(q^{1},q^{2},\dots ,q^{d})} in which the coordinate hypersurfaces all meet at right angles (note that superscripts are indices, not exponents). A coordinate surface for a particular coordinate qk is the curve, surface, or hypersurface on which qk is a constant. For example, the three-dimensional Cartesian coordinates (x, y, z) is an orthogonal coordinate system, since its coordinate surfaces x = constant, y = constant, and z = constant are planes that meet at right angles to one another, i.e., are perpendicular. Orthogonal coordinates are a special but extremely common case of curvilinear coordinates.